Плотность числовых множеств.

Разбиения \mathbb{Z} на арифметические прогрессии.

- Множество целых чисел разбито в объединение непересекающихся бесконечных в обе стороны арифметических прогрессий с разностями d_i . Пусть $\sum \frac{1}{d_i} = S$. (a) Докажите, что если множество прогрессий конечно, то S=1. (b) Докажите, что если множество прогрессий бесконечно, то $S \leq 1$, причём иногда неравенство строгое.
- Пусть $a_1 < a_2 < \ldots$ последовательность натуральных чисел с положительной **2**. *плотностью* (т.е. существует $\varepsilon > 0$, что в любом отрезке $1, 2, \ldots, N$ содержится не меньше $N\varepsilon$ членов последовательности). Докажите, что можно выделить из неё бесконечную подпоследовательность чисел, ни одно из которых не делит другое.
- Пусть $a_1 < \ldots < a_k \leqslant n$ набор натуральных чисел таких, что наименьшее общее **3**. кратное любых двух из них больше n. Докажите, что $\sum \frac{1}{a_i} < 2$.
- Даны натуральные числа a_1, a_2, \ldots, a_n . Выступление сборной Москвы на финале 4. Всероссийской олимпиады школьников оценивается по n показателям, причём показатель номер i может принимать любые натуральные значения от 1 до a_i . Сборная Москвы улучшила результат по сравнению с прошлым годом, если все показатели, за исключением не более чем одного, выросли. Пусть $S = \sum \frac{1}{a_i}$.
 - (a) Докажите, что если S > 1, то сборная Москвы не сможет бесконечно долго улучшать результаты.
 - **(b)** Докажите, что если $S \leqslant \frac{1}{2},$ то возможна ситуация, когда сборная Москвы бесконечно долго улучшает свои результаты.
- **5.** Существуют ли 2017 непересекающихся арифметических прогрессий натуральных чисел таких, что каждая из них содержит простое число, превосходящее 2017, и лишь конечное количество натуральных чисел в них не лежит?
- 6. В последовательности натуральных чисел a_1, a_2, a_3, \dots каждое натуральное число встречается ровно один раз. Докажите, что существует бесконечно много натуральных n таких, что НОД $(a_n, a_{n+1}) \leq \frac{3n}{4}$.
- Рассмотрим n бесконечных в обе стороны арифметических прогрессий. Предположим, что прогрессии в объединении покрывают какие-то 2^n последовательных целых чисел. Докажите, что прогрессии в объединении покрывают все целые числа.

Сама по себе это сложная задача, вот вам лемма.

Предположим, что при всех $t = 0, 1, \dots, k-1$ выполнено равенство

$$a_1 z_1^t + a_2 z_2^t + \ldots + a_k z_k^t = 0.$$

Тогда оно выполнено при всех целых t.

- Дана функция $f: \mathbb{N} \to \hat{\mathbb{N}}$, удовлетворяющая двум условиям. 8.
 - При всех $m,n\in\mathbb{N}$ число $\frac{f^{(n)}(m)-m}{n}$ лежит в \mathbb{N} , где $f^{(n)}(m)=\underbrace{f(f(\ldots f(m)))}_{n}$.
 - f не принимает лишь конечное число значений.

Докажите, что последовательность $a_m = f(m) - m$ периодична.